神经网络方法在医学统计预测中的应用

  • 摘要: 结合案例分析,将神经网络方法应用于医学统计预测,并与传统的回归分析进行了预测效能的比较。结果表明,神经网络方法与回归分析在分类效能上比较相近,但神经网络方法的容错性更好,能通过训练和学习获得完整的预测规则。在本研究中,对于连续变量的处理,多层感知器表现出比径向基神经网络更占优势,而在对离散变量进行分类时,径向基神经网络的结果则更为优良。总之,神经网络方法在医学统计中可以获得有效应用,并能预测比回归分析更多的结果,因而在大数据时代具有更广阔的应用前景。

     

/

返回文章
返回